The Conley-Zehnder Index of Brownian Paths on Sp(2,R)

نویسندگان

  • Yuchen Fu
  • Paul Seidel
چکیده

We investigate the probability distribution of Conley-Zehnder indices associated with Brownian random paths on Sp(2n,R) that start at the identity. In the case of n = 1, we prove that the distribution has the same moment asymptotics as the standard random walk on the real line. We also present numerical evidence suggesting that the same asymptotics should hold for general n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Product Formula for the Conley–zehnder Index of Symplectic Paths and Its Applications

Using invariance by fixed-endpoints homotopies and a generalized notion of symplectic Cayley transform, we prove a product formula for the Conley–Zehnder index of continuous paths with arbitrary endpoints in the symplectic group. We discuss two applications of the formula, to the metaplectic group and to periodic solutions of Hamiltonian systems.

متن کامل

A Weyl Calculus on Symplectic Phase Space

We study the twisted Weyl symbol of metaplectic operators; this requires the definition of an index for symplectic paths related to the Conley–Zehnder index. We thereafter define a metaplectically covariant algebra of pseudo-differential operators acting on functions on symplectic space.

متن کامل

On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths

Using the ideas of Keller, Maslov introduced in the mid-1960’s an index for Lagrangian loops, whose definition was clarified by Arnold. Leray extended Arnold results by defining an index depending on two paths of Lagrangian planes with transversal endpoints. We show that the combinatorial and topological properties of Leray’s index suffice to recover all Lagrangian and symplectic intersection i...

متن کامل

The Maslov index for paths

Maslov’s famous index for a loop of Lagrangian subspaces was interpreted by Arnold [1] as an intersection number with an algebraic variety known as the Maslov cycle. Arnold’s general position arguments apply equally well to the case of a path of Lagrangian subspaces whose endpoints lie in the complement of the Maslov cycle. Our aim in this paper is to define a Maslov index for any path regardle...

متن کامل

A note on the Maslov index of Hamiltonian systems

The aim of this paper is to give an explicit formula in order to compute the Maslov index of the fundamental solution of a linear autonomous Hamiltonian system, in terms of the Conley-Zehnder index and the time one flow.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016